DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint.

نویسندگان

  • Xingxu Huang
  • Thanh Tran
  • Lingna Zhang
  • Rashieda Hatcher
  • Pumin Zhang
چکیده

Mitotic catastrophe is the response of mammalian cells to mitotic DNA damage. It produces tetraploid cells with a range of different nuclear morphologies from binucleated to multimicronucleated. In response to DNA damage, checkpoints are activated to delay cell cycle progression and to coordinate repair. Cells in different cell cycle phases use different mechanisms to arrest their cell cycle progression. It has remained unclear whether the termination of mitosis in a mitotic catastrophe is regulated by DNA damage checkpoints. Here, we report the presence of a mitotic exit DNA damage checkpoint in mammalian cells. This checkpoint delays mitotic exit and prevents cytokinesis and, thereby, is responsible for mitotic catastrophe. The DNA damage-induced mitotic exit delay correlates with the inhibition of Cdh1 activation and the attenuated degradation of cyclin B1. We demonstrate that the checkpoint is Chk1-dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01.

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G(2) DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after check...

متن کامل

Therapeutic Discovery Determinants of Mitotic Catastrophe on Abrogation of the G2 DNA Damage Checkpoint by UCN-01

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G2 DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after checkpo...

متن کامل

Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.

In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the a...

متن کامل

DNA Damage and Cellular Stress Responses Inhibition of Eg5 Acts Synergistically with Checkpoint Abrogation in Promoting Mitotic Catastrophe

The G2 DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G1 phase, which may contribute to further genome instability. Our previous studies reveal that t...

متن کامل

The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis.

Defective genome maintenance mechanisms, involving DNA repair and cell-cycle checkpoint pathways, initiate genetic instability in many sporadic and hereditary cancers. The DNA damage effector Checkpoint kinase 1 (Chk1) is a critical component of DNA replication, intra-S phase, and G(2)/M phase checkpoints and a recently reported mitotic spindle-assembly checkpoint. Here, we report for the first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2005